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Abstract

Background: Guillain-Barré Syndrome (GBS) can be triggered by gastrointestinal or respiratory infections, including
influenza. During the 2009 influenza A (H1N1) pandemic in the United States, monovalent inactivated influenza vaccine
(MIV) availability coincided with high rates of wildtype influenza infections. Several prior studies suggested an elevated GBS
risk following MIV, but adjustment for antecedent infection was limited.

Methods: We identified patients enrolled in health plans participating in the Vaccine Safety Datalink and diagnosed with
GBS from July 2009 through June 2011. Medical records of GBS cases with 2009–10 MIV, 2010–11 trivalent inactivated
influenza vaccine (TIV), and/or a medically-attended respiratory or gastrointestinal infection in the 1 through 141 days prior
to GBS diagnosis were reviewed and classified according to Brighton Collaboration criteria for diagnostic certainty. Using a
case-centered design, logistic regression models adjusted for patient-level time-varying sources of confounding, including
seasonal vaccinations and infections in GBS cases and population-level controls.

Results: Eighteen confirmed GBS cases received vaccination in the 6 weeks preceding onset, among 1.27 million 2009–10 MIV
recipients and 2.80 million 2010–11 TIV recipients. Forty-four confirmed GBS cases had infection in the 6 weeks preceding onset,
among 3.77 million patients diagnosed with medically-attended infection. The observed-versus-expected odds that 2009–10 MIV/
2010–11 TIV was received in the 6 weeks preceding GBS onset was odds ratio = 1.54, 95% confidence interval (CI), 0.59–3.99; risk
difference = 0.93 per million doses, 95% CI, 20.71–5.16. The association between GBS and medically-attended infection was: odds
ratio = 7.73, 95% CI, 3.60–16.61; risk difference = 11.62 per million infected patients, 95% CI, 4.49–26.94. These findings were
consistent in sensitivity analyses using alternative infection definitions and risk intervals for prior vaccination shorter than 6 weeks.

Conclusions: After adjusting for antecedent infections, we found no evidence for an elevated GBS risk following 2009–10 MIV/
2010–11 TIV influenza vaccines. However, the association between GBS and antecedent infection was strongly elevated.
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Introduction

Guillain-Barré Syndrome (GBS), the most common cause of acute

flaccid paralysis worldwide [1], can be triggered by antecedent

gastrointestinal or respiratory infections (including influenza) [2,3],

which are associated with two-thirds of GBS cases [4,5]. A possible

association between GBS and influenza vaccine has been a concern

since the 1976 swine-origin influenza vaccination program [6].

Although several studies of subsequent influenza vaccine formula-

tions did not support an elevated GBS risk [7–11], monitoring GBS

risk following influenza A (H1N1) 2009 monovalent vaccines was

considered a public health priority, and multiple surveillance systems

were activated [12]. In the Vaccine Safety Datalink (VSD), GBS was

significantly associated with monovalent inactivated (MIV) but not

seasonal trivalent inactivated (TIV) influenza vaccines in 2009–10,

using a self-controlled risk interval design [13,14] that compared the

timing of GBS onset in risk and control intervals following

immunization within the same individuals [15]. Although a causal

association could not be proven, the findings from this and other

surveillance programs [16–19] may inform the Countermeasures

Injury Compensation Program [20] to include GBS as a potential

adverse event following MIV.

In the prior VSD GBS study, five of nine cases with onset in the

six weeks following MIV also had an antecedent respiratory

infection documented in the medical record within one month

prior to GBS onset, compared with one of eight cases following

TIV [15]. Of the five GBS cases following MIV with a

documented antecedent respiratory infection, three had visited a

healthcare provider and been diagnosed with acute upper

respiratory infection of multiple or unspecified sites, while the

other two patients’ infections had not been medically-attended.

The timing of initial MIV availability in VSD coincided with the

peak of the second wave of the 2009 influenza A (H1N1) pandemic

in late October 2009 [21,22], while 2009–10 TIV administration

mostly preceded this wave [15]. The prior study may have been

biased toward a positive GBS/2009–10 MIV association, since

some GBS cases soon after vaccination may have been due to

influenza virus infection [23–25].

Our objectives were to estimate the association between: 1) GBS

and receipt of either 2009–10 MIV or 2010–11 TIV (as both

vaccine formulations contained the same novel H1N1 antigen),

adjusting for patient-level medically-attended infection, and 2)

GBS and medically-attended infection, adjusting for 2009–10

MIV/2010–11 TIV receipt.

Methods

Study Population
The VSD [26] is a collaboration between the Centers for

Disease Control and Prevention (CDC), America’s Health

Insurance Plans, and ten health care systems (‘‘sites’’). The VSD

collects vaccination and medical care data on enrollees, including

age, sex, vaccines administered, and International Classification of

Diseases, Ninth Revision, Clinical Modification (ICD-9-CM)

diagnosis codes for medical encounters in clinic, emergency

department, and hospital settings.

Ten sites provided data on over 9 million members: Group

Health Cooperative (Washington State); Harvard Vanguard

Medical Associates and Harvard Pilgrim Health Care (Massachu-

setts); HealthPartners Research Foundation (Minnesota); Kaiser

Permanente of Colorado; Kaiser Permanente of Georgia; Kaiser

Permanente of Hawaii; Kaiser Permanente of Northern Califor-

nia; Kaiser Permanente Northwest (Oregon); Kaiser Permanente

of Southern California; and Marshfield Clinic Research Founda-

tion (Wisconsin). Institutional review boards at each site approved

this study and determined that the study met the regulatory

requirements necessary in order to waive informed consent by the

patients for their information to be stored and used for research. A

waiver of authorization under the Standards for Privacy of Individually

Identifiable Health Information (‘‘Privacy Rule’’) of the Health

Insurance Portability and Accountability Act was authorized.

Case Finding and Medical Record Review
Potential GBS cases aged $6 months were identified using

ICD-9-CM diagnosis code 357.0 assigned during clinic, emergen-

cy department, or hospital visits from July 2009 through June

2011. Cases were eligible if they were: 1) enrolled at their site for

$141 days as of the GBS diagnosis, allowing for 2 weeks following

the end of the control interval to avoid underascertainment, 2)

hospitalized within the month before or after GBS diagnosis, and

3) diagnosed within 1 through 141 days following an eligible

vaccination and/or infection, as described below (cases without

these exposures were uninformative for the specified analyses and,

for efficiency, were not reviewed). Cases were excluded if they had

any diagnoses of GBS or chronic inflammatory demyelinating

polyneuritis (CIDP) (ICD-9-CM code 357.81) in the prior 5 years

within available electronic data.

Eligible cases previously adjudicated for the prior study [15]

were included. For newly identified cases, medical records for a

minimum of 60 days prior to and following the incident GBS

diagnosis were reviewed to confirm cases and to determine GBS

onset date. To exclude cases later determined to have CIDP [27]

(an exclusionary criterion for GBS diagnosis) [28], additional

records were reviewed for patients who had: 1) a CIDP diagnosis

anytime following the GBS diagnosis, 2) a possible CIDP diagnosis

noted during chart abstractions, and/or 3) a primary inpatient

diagnosis for GBS in the 2 weeks through 6 months following the

incident GBS diagnosis. Clinician adjudicators at each site applied

criteria developed by the Brighton Collaboration [28] to classify

GBS and Fisher syndrome (a GBS subtype) into 4 levels of

certainty [15].

Exposure Definitions
We identified 2009–10 MIV and 2010–11 TIV vaccines using

electronic vaccination records. An association has not been

demonstrated between GBS and 2009–10 TIV or live-attenuated

influenza vaccines; these vaccine formulations were thus excluded

from analysis for simplicity. We identified medically-attended

acute respiratory, gastrointestinal, and unspecified viral infections

using ICD-9-CM codes (Table S1) for visits in any setting from

July 2009 through June 2011. Codes were adapted from lists used

in syndromic surveillance [29]. To avoid recall bias, we excluded

from analysis subclinical infections that were recorded only as

notes in medical records on or after the GBS diagnosis date, as

more recent infections would be more likely to be recorded than

less recent infections.

Study Design
The case-centered method [15,21,30–33] adjusts for time-

varying sources of confounding, including vaccine receipt and

infections. To test the hypothesis that there was an excess risk of

GBS cases with antecedent vaccination, adjusting for medically-

attended infection, logistic regression was used to model the

observed-versus-expected odds that vaccination occurred within a

biologically plausible period of elevated risk (‘‘risk interval,’’ 1
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through 42 days) prior to GBS onset. The dataset included 1

record for each GBS case with individually matched population

data on all vaccinees as of the GBS onset date of the same site, age

group, sex, and medically-attended infection status (yes/no in the

1 through 42 days prior to GBS onset). (Note that only those

infections that were medically-attended could be identified in the

individually matched population data, as it would have been

infeasible to conduct medical record reviews or interviews to

identify subclinical infections in non-GBS cases.) The model

included 2 variables: a binary indicator of the outcome (whether

vaccination was inside or outside of the risk interval) and the log of

the ‘‘expected’’ odds of being in the risk interval, specified as an

offset. The ‘‘expected’’ odds were derived from the proportion of

enrolled vaccinees similar to the GBS case among the whole

population who were still in a post-vaccination risk interval for

their most recent dose (1 or 2) on the onset date of the GBS case.

The intercept yielded the odds ratio estimate for vaccination in the

risk interval prior to GBS onset vs. in the control interval,

adjusting for site, age group, sex, and infection status. Risk

differences were calculated using the formula: (odds ratio –1)*p0,

where p0 was the GBS background rate of 1.5 per 100,000 person-

years [5,34] (assumed to be known without error), scaled to a 6-

week risk interval.

Primary Analysis
Vaccinations were considered to be in the risk interval if they

were administered in the 1 through 42 days (i.e., 1 through 6

weeks) prior to GBS onset, consistent with biological plausibility

and prior studies [6,15,21]. Vaccinations in the prior 43 through

49 days were excluded as a washout interval, to allow for the

possibility of the risk period extending up to an additional week

[19]. Vaccinations in the prior 50 through 126 days (i.e., 8 through

18 weeks) were in the control interval, consistent with the

definition used in the prior study [15]. Cases were considered to

have antecedent infection if they had a medically-attended

respiratory, gastrointestinal, or unspecified viral infection (Table

S1) in the 1 through 42 days prior to GBS onset.

An analogous strategy was used to test the second hypothesis

regarding an excess risk of GBS cases with antecedent infection,

adjusting for vaccination. That is, medically-attended respiratory,

gastrointestinal, or unspecified viral infections were considered to

be in the risk interval if they were in the 1 through 42 days prior to

GBS onset. Infections in the prior 43 through 49 days were

excluded. If the patient’s most recent medically-attended infection

was in the 50 through 126 days prior to GBS onset, then the

infection was considered to be in the control interval. Cases were

considered to have antecedent vaccination if they received a dose

of 2009–10 MIV or 2010–11 TIV in the 1 through 42 days prior

to GBS onset. Analyses were conducted using SAS, version 9 (SAS

Institute Inc., Cary, North Carolina).

Secondary Analyses
Secondary analyses were defined a priori to assess the

magnitude of effect for explicitly adjusting for infection and

vaccination, and to test the sensitivity of the primary analysis

results to alternative infection and risk interval definitions [35]. For

the GBS/vaccination model, we removed adjustment for infection

by redefining the stratum for each GBS case, including onset date,

age group, sex, and site. This analysis differed from a secondary

analysis in the prior VSD GBS study [15] by including an

additional vaccination season (2010–11) to improve power, by

using in the offset term the most recent dose (1 or 2) prior to the

GBS onset date rather than only the first dose, and by imposing an

enrollment criterion for all vaccinees, similar to the vaccinated

GBS cases.

All confirmed cases (Brighton Criteria Levels 1–4, where Level

4 is ‘‘a reported event of GBS or Fisher Syndrome with insufficient

evidence to meet the case definition’’) [28] were included in all

analyses, except for a secondary analysis to assess the effect of

restricting to Brighton Criteria Levels 1–3. To assess effect

modification by vaccine type, estimates for 2009–10 MIV and

for 2010–11 TIV were also separately calculated.

The infection definition was restricted to respiratory infection-

only in four secondary analyses. Two definitions were ICD-9-CM

code based: 1) upper or lower respiratory tract infection diagnosis

(Table S1), and 2) influenza diagnosis specifically. Other

definitions required a respiratory tract infection diagnosis and on

the same day 3) fever [36], or influenza or respiratory syncytial

virus (RSV) laboratory test ordered (a potential marker for acute

infection, regardless of test result), and 4) fever, or positive influenza

or RSV laboratory test. Two additional analyses focused on

gastrointestinal infection: 1) gastrointestinal infection diagnosis

(Table S1), and 2) expanding 1) to also include a diarrhea

diagnosis (787.91), which is nonspecific for infectious diarrhea.

Although a 6-week risk interval is standard for this research

question, the period of greatest risk elevation may be shorter

[10,37]. As vaccination timing was precisely known [38], two

shorter vaccine risk intervals (4-weeks and 3-weeks) were selected,

and the 6-week interval was also subdivided into 3 intervals (i.e.,

days 1 through 7, 8 though 28, and 29 through 42). Analogous

secondary analyses for shorter risk intervals following infection

would not be valid, as the timing of infection onset was not known

to this level of precision.

Results

Vaccination and Infection Patterns
The total number of vaccinations administered was 1,267,745

2009–10 MIV first doses and 2,798,788 2010–11 TIV first doses.

The number of patients with medically-attended infection was

3,770,362, including 182,434 influenza diagnoses, 3,014,506 other

respiratory infections, 438,444 unspecified viral infections, and

134,978 gastrointestinal infections.

2009–10 MIV administration began October 2009, concurrent

with peaks of medically-attended infections for influenza, other

respiratory tract infections, and unspecified viral infections

(Figure 1). In contrast, 2010–11 TIV administration peaked in

October 2010 and was mostly complete prior to the February

2011 peak of seasonal infections (Figure 1). Vaccination timing was

similar between vaccinees who were vs. were not recently infected

(Figure 2), suggesting that adjusting for infection in case-centered

analysis would have a modest effect.

GBS Case Confirmation and Exposures
The number of eligible GBS cases in the electronic data was

469; of these, 179 (38%) had an eligible vaccination or infection

exposure in the 1 through 141 days prior to GBS diagnosis.

Seventy-two cases in the electronic data had an antecedent

vaccination, and 133 cases had an antecedent infection (Table 1);

26 cases had both exposures. Of the 153 exposed cases for whom

medical records were available for review and who did not have

GBS onset prior to exposure, 78 were confirmed as GBS or Fisher

Syndrome Level 1–4, for an overall positive predictive value of

51.0%. The most common reason why cases were not confirmed

was an alternative diagnosis (Table 1). Of confirmed cases, 44

(56%) were male, 42 (54%) were $50 years-old (Table S2), and

Guillain-Barré Syndrome, Vaccines, and Infections
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Figure 1. Influenza vaccinations and medically-attended infections, Vaccine Safety Datalink, July 2009–June 2011.
doi:10.1371/journal.pone.0067185.g001

Figure 2. Weekly administration of influenza vaccines, by medically-attended infection status. Weekly administration of 2009–10
monovalent inactivated influenza vaccine and 2010–11 trivalent inactivated influenza vaccine, by medically-attended infection status in prior 6 weeks
(yes/no).
doi:10.1371/journal.pone.0067185.g002
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the median length between GBS onset and diagnosis was 5 days

(interquartile range: 2, 11).

The intersection of vaccination and medically-attended infec-

tion exposures in risk and control intervals prior to GBS onset is in

Table S3. In the 6 weeks prior to GBS onset, 18 cases received

vaccine and 44 cases had medically-attended infection. Three

cases had both exposures in the risk interval; all 3 were in the

2009–10 influenza season, and all were diagnosed with ICD-9-CM

465.9 (acute upper respiratory infection of multiple or unspecified

sites). An additional 4 cases had respiratory symptoms (including

upper respiratory infection, cold, and bronchitis) noted in the

medical records in the risk interval prior to GBS onset, but these

infections were not medically-attended. Thus, among 18 patients

with vaccination in the risk interval prior to GBS onset, 7 (39%)

had symptoms of a respiratory infection documented in the

medical record, 3 of which were medically-attended.

Fifteen cases had both a medically-attended infection shortly (in

the 1 through 4 days) prior to GBS onset and also infectious

symptom details noted in medical records. The median length

between infection onset and most recent medically-attended

infection diagnosis was 13 days (range: 7–93). Symptoms

corresponded with infection diagnoses, e.g., a patient with cough,

runny nose, headache, wheezing, and shortness of breath was

diagnosed with bronchitis. Recorded infection symptoms were not

neurologic in nature (e.g., weakness, tingling), suggesting that

prodromal GBS was not misdiagnosed as acute infection. The

most commonly diagnosed infections were acute upper respiratory

infection, pneumonia, and bronchitis (Table 2).

Primary Analysis
The GBS/vaccination association, adjusting for medically-

attended antecedent infection, was 1.54 (95% confidence interval

[CI], 0.59–3.99). In contrast, the GBS/infection association,

adjusting for antecedent vaccination, was much stronger (odds

ratio = 7.73, 95% CI, 3.60–16.61) (Table 3, analysis 1). Assuming

a GBS background rate of 1.5 per 100,000 person-years [5,34],

the risk difference for vaccination was 0.93 GBS cases per million

doses (95% CI, 20.71–5.16), and for medically-attended infection

was 11.62 GBS cases per million infected patients (95% CI, 4.49–

26.94).

Table 1. Disposition of eligible patients with Guillain-Barré Syndrome (GBS), by vaccination and infection exposure statusa and
timing of diagnosis, Vaccine Safety Datalink, 2009–2011.

GBS cases with influenza vaccinationb

in 1–141 days prior to GBS diagnosis
(n = 72)

GBS cases with infectionc in 1–141
days prior to GBS diagnosis (n = 133)

Category Level
1–42 days
(n, %) (N = 32)

43–141 days
(n, %) (N = 40)

1–42 days
(n, %) (N = 97)

43–141 days
(n, %) (N = 36)

Eligible and confirmed
(Brighton Collaboration
Criteria)

GBS Level 1 3 (9) 1 (3) 9 (9) 1 (3)

GBS Level 2 6 (19) 10 (25) 18 (19) 6 (17)

GBS Level 3 2 (6) 1 (3) 2 (2) 1 (3)

GBS Level 4 3 (9) 5 (13) 8 (8) 4 (11)

Fisher Syndrome Level 1 0 3 (8) 1 (1) 0

Fisher Syndrome Level 2 1 (3) 1 (3) 4 (4) 0

Fisher Syndrome Level 3 0 0 1 (1) 0

Fisher Syndrome Level 4 0 1 (3) 1 (1) 0

Medical records unavailable for review 1 (3) 2 (5) 4 (4) 2 (6)

GBS onset prior to exposure 2 (6) 0 17 (18) 0

Not confirmed as GBS Chronic inflammatory demyelinating
polyneuritis (CIDP)d

0 1 (3) 5 (5) 5 (14)

Alternative diagnosis other than CIDPe 9 (28) 9 (23) 16 (16) 7 (19)

No documentation of GBS in medical
record

3 (9) 5 (13) 10 (10) 6 (17)

Remote GBS occurrence listed in
medical history

1 (3) 1 (3) 1 (1) 3 (8)

Follow-up care for prior GBS diagnosis 0 0 0 1 (3)

Coding error 1 (3) 0 0 0

Positive predictive value among patients with available medical
records and who did not have GBS onset prior to exposure

15/29 = 51.7% 22/38 = 57.9% 44/76 = 57.9% 12/34 = 35.3%

a26 cases had both prior exposures in the 1 through 141 days prior to GBS diagnosis.
b2009–10 monovalent inactivated influenza vaccine or 2010–11 trivalent inactivated influenza vaccine.
cMedically-attended respiratory, gastrointestinal, or unspecified viral infection.
dFor cases with electronic diagnoses of CIDP (n = 9): median length between GBS diagnosis and first CIDP diagnosis: 51 days (interquartile range: 4, 81).
eAlternative diagnoses included: transverse myelitis/myelitis (including post-viral or varicella zoster virus), acute disseminated encephalomyelitis, conversion disorder/
functional component, viral illness, viral ataxia, viral myopathy, Charcot-Marie-Tooth disease, diabetic amyotrophy or myopathy, generalized vasculitis, vasculitis
neuropathy, hereditary brachial neuropathy, Lyme meningitis, multiple cranial neuropathy, multiple sclerosis, sarcoid neuropathy, encephalomyopathy radiculitis,
myasthenia gravis, steroid myopathy, paresis, polymyositis, and not specified.
doi:10.1371/journal.pone.0067185.t001
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Secondary Analyses
For the GBS/vaccination association, removing explicit adjust-

ment for antecedent infection moved the point estimate modestly

further from the null, from 1.54 to 1.64 (Table 3, analysis 2). The

effect on the GBS/infection association of removing explicit

adjustment for antecedent vaccination was similar, from odds

ratio = 7.73 to 7.93.

Restricting to Brighton Criteria Levels 1–3 did not meaningfully

impact the GBS/vaccination association, yet further strengthened

the GBS/infection association to odds ratio = 10.38 (analysis 3).

The point estimates for the GBS/vaccination association appeared

higher for 2009–10 MIV than for 2010–11 TIV, but were not

significantly different (analyses 4–5). Of the 22 GBS cases

following 2010–11 TIV vaccination, 8 (36%) previously received

2009–10 MIV.

The GBS/vaccination association did not become elevated

under any alternative infection or risk interval definitions (analyses

6–16). The GBS/infection association strengthened to odds

ratio = 8.87 upon restriction to respiratory tract infection as the

most recent infection type (analysis 6).

Discussion

In the VSD population, there was no statistically significant

association between GBS and 2009–10 MIV and 2010–11 TIV

combined (odds ratio = 1.54, 95% CI, 0.59–3.99; risk differ-

ence = 0.93 per million doses, 95% CI, 20.71–5.16). This finding

was robust to alternative infection and risk interval definitions. In

contrast, GBS was strongly associated with infection (odds

ratio = 7.73, 95% CI, 3.60–16.61; risk difference = 11.62 per

million infected patients, 95% CI, 4.49–26.94), especially respira-

tory infection, consistent with prior studies [10,39,40].

Prior observational studies assessing the GBS/2009–10 MIV

association have important methodological limitations regarding

antecedent infection adjustment (Table S4). Passive surveillance

studies [41] had unreliable information on relevant co-exposures,

including infections. Case-control studies [40,42] may be subject

to misclassification bias, with potentially differential infection

ascertainment between cases and controls. In addition, exposures

ascertained from medical records [15–18,43,44] were recorded

after GBS onset and can thus be biased; records for patients with

one possible documented cause of GBS (e.g., vaccination) may

have under-ascertainment of alternative exposures (e.g., infection).

Furthermore, several studies [15–18,43–45] systematically ascer-

tained antecedent infections during risk but not during control

periods, so analyses were not designed to formally adjust for

infection. Studies using a self-controlled risk interval design

[15,16,18] were limited because 2009–10 MIV administration

and wild-type infections coincided, such that some cases in the risk

interval following vaccination may have been due to infection. The

Table 2. Most recent medically-attended infection diagnoses within 1 through 42 days prior to confirmed Guillain-Barré syndrome
(GBS) onset, by recent influenza vaccinationa status, Vaccine Safety Datalink, 2009–2011.

Infection type
ICD-9-CM
Code Description

Patients with infection and
influenza vaccination 1
through 42 days prior to
GBS onset (n = 3)

Patients with infection but
no influenza vaccination 1
through 42 days prior to
GBS onset (n = 41)b

Upper or lower
respiratory tract

382.9 Unspecified otitis media – 5

460 Acute nasopharyngitis – 1

461.9 Acute sinusitis unspecified – 2

462 Acute pharyngitis – 3

463 Acute tonsillitis – 2

464.00 Acute laryngitis and tracheitis without obstruction – 1

465.9 Acute upper respiratory infections of unspecified site 3 6

466.0 Acute bronchitis – 4

482.42 Methicillin resistant pneumonia due to Staphylococcus
aureus

– 1

486 Pneumonia, organism unspecified – 7

487.1 Influenza with other respiratory manifestations – 2

490 Bronchitis not specified as acute or chronic – 7

510.9 Empyema without fistula – 2

513.0 Abscess of lung – 1

Gastrointestinal 008.45 Intestinal infection due to Clostridium difficile – 1

008.8 Intestinal infection due to other organism not
elsewhere classified

– 1

009.0 Infectious colitis enteritis and gastroenteritis – 1

009.2c Infectious diarrhea – 1

Unspecified
viral infection

079.99 Unspecified viral infection – 2

a2009–10 monovalent inactivated influenza vaccine or 2010–11 trivalent inactivated influenza vaccine.
bThere may be .1 medically-attended infection diagnosis on the same day, resulting in more infection diagnoses than GBS patients.
cThe patient with a diagnosis of infectious diarrhea also tested positive for Campylobacter jejuni.
doi:10.1371/journal.pone.0067185.t002
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direction of this bias changed the following season, since 2010–11

TIV administration preceded infections (Figure 1), and some cases

in the control interval for vaccination may have been due to

infection.

In contrast, this study used the case-centered design. This design

fully adjusted for seasonal exposures such as infections, including

the coincidental timing of vaccination and infection in 2009–10

and the different relative timing of vaccination and infection in

2010–11. This design had been used in a secondary analysis in the

prior VSD GBS study using data from 2009–10 (odds ratio = 2.0,

95% CI, 0.5–8.1) [15]. The results of the current study, using data

from both 2009–10 and 2010–11, are consistent with that analysis.

In addition, explicit adjustment within the case-centered design for

patient-level medically-attended infections (yes/no in the 1

through 42 days prior to GBS onset) did not substantially change

the results (Table 3, analyses 1 vs. 2). This does not suggest that

infection is not an important confounder of the association

between vaccination and GBS, but rather that infection was not

associated with the timing of vaccination. Such an adjustment may

be more important in future influenza seasons, if recently infected

and uninfected vaccinees receive the timing of their vaccine

differentially (e.g., due to the MIV and TIV precaution of

moderate to severe acute illness with or without fever) [46]. By

restricting adjustment to infections that were medically-attended,

all informative infections were recorded prior to GBS onset, and

patient- and population-level (control) infection data were

ascertained consistently.

The GBS/vaccine association point estimates appeared slightly

higher in the 2009–10 season than in the 2010–11 season,

although they were not significantly different (Table 3). One

explanation for a possibly higher risk in 2009–10 is that the

population did not have prior exposure to wild-type 2009 H1N1

infection and may have had a more robust immune response to

the vaccine containing the novel antigen. However, chance may

be a more likely explanation, as more than a third of cases

following 2010–11 TIV had prior 2009–10 MIV exposure, yet did

not have GBS in 2009–10.

Our study has at least five potential limitations. First, some

infection and vaccine exposures may not have been identified

using electronic medical records, reducing power. Subclinical

infections for which healthcare was not sought and vaccinations

administered in nontraditional settings may have been missed

[47,48]. However, missing infections and vaccinations would not

bias analyses, as long as exposures were equally likely to be missed

in risk as in control intervals. Second, there may be uncontrolled

confounding. In the case-centered design, a confounder would be

a factor associated with both the outcome of GBS and also the

exposure, which is the timing of vaccination. For example, within a

given stratum defined by people of the same site, age group, sex,

and infection status, there could be uncontrolled confounding if a

factor associated with increased GBS risk were also associated with

receiving vaccination earlier or later than the other people within

that same stratum. We are not aware of an example of such a

potential confounder, but one or more may theoretically exist. As

with the self-controlled risk interval design, the case-centered

design restricted analyses to vaccinees only, thus removing any

confounders related to the propensity to receive vaccination at all.

Third, the case-centered design restricting to vaccinees has

reduced power compared with the self-controlled risk interval

design. This is because all cases with GBS onset in the risk or

control interval are equally informative in the self-controlled risk

interval design, while any cases very early in (or after) the

vaccination season have nearly 100% (or 0%) probability of being

in the risk interval and are thus uninformative or minimally

informative in a case-centered design restricting to vaccinees.

Future analyses using the case-centered design could improve

power (at the potential expense of increasing bias) by defining the

expected odds of being in the risk interval differently for such

otherwise uninformative cases, e.g., by including individuals who

were unvaccinated but otherwise similar in risk to the early

vaccinees. Fourth, only the most recent 2009–10 MIV dose, 2010–

11 TIV dose, and medically-attended infections prior to GBS

onset were assessed. For simplicity, multiple vaccine doses or

infection visits per patient were not considered, nor were all

possibly relevant vaccine formulations and wildtype infections

(e.g., cytomegalovirus or Epstein-Barr virus) [2,3]. Fifth, the

Brighton Collaboration criteria were developed neither to classify

cases into subtypes (e.g., demyelinating or axonal [1]), nor to

capture all clinical syndromes in the GBS spectrum [28].

Consequently, we may have under-ascertained atypical GBS

case-patients who did not meet these classification criteria, e.g.,

due to lack of flaccid paralysis [49]. However, the incidence of

such cases is very low [1,28], and under-ascertainment, if similar in

risk and control intervals, was unlikely to bias reported estimates.

In conclusion, this study found no evidence for a GBS/2009–10

MIV/2010–11 TIV influenza vaccines association, excluding a

risk greater than 5.2 cases per million doses, yet strong evidence

for a GBS/infection association. This should inform evaluations of

the relative benefits and harms of influenza vaccine, especially in

light of the risks of natural influenza infection, including GBS. As

influenza vaccines are administered seasonally and a high

proportion of GBS cases are associated with seasonal infections,

future evaluations should consider methodologies that adjust for

patient-level effects of seasonal exposures.
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Barré syndrome and H1N1 influenza vaccine in UK children. Lancet 378:

1545–1546.

44. De Wals P, Deceuninck G, Toth E, Boulianne N, Brunet D, et al. (2012) Risk of
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syndrome and H1N1 (2009) pandemic influenza vaccination using an AS03

adjuvanted vaccine in the United Kingdom: Self-controlled case series. Vaccine

29: 7878–82.

46. Fiore AE, Uyeki TM, Broder K, Finelli L, Euler GL, et al. (2010) Prevention and

control of influenza with vaccines: recommendations of the Advisory Committee

on Immunization Practices (ACIP), 2010. MMWR Recomm Rep 59: 1–62.

47. Greene SK, Shi P, Dutta-Linn MM, Shoup JA, Hinrichsen VL, et al. (2009)

Accuracy of data on influenza vaccination status at four Vaccine Safety Datalink

sites. Am J Prev Med 37: 552–555.

48. Sy LS, Liu IL, Solano Z, Cheetham TC, Lugg MM, et al. (2010) Accuracy of

influenza vaccination status in a computer-based immunization tracking system

of a managed care organization. Vaccine 28: 5254–5259.

49. Shaikh AG, Termsarasab P, Nwankwo C, Rao-Frisch A, Katirji B (2012)
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